Tonga volcano eruption blasted water enough to fill 58,000 Olympic-sized swimming pools into atmosphere

One of the most powerful volcanic eruptions on the planet blasted such a massive amount of water vapor high into the atmosphere that it’s likely to temporarily warm the Earth’s surface, according to detections from a NASA satellite.

When the undersea Hunga Tonga-Hunga Ha’apai volcano erupted on January 15, 40 miles north of Tonga’s capital, it created a tsunami as well as a sonic boom that rippled around the world twice.

The eruption sent a tall plume of water vapor into the stratosphere, which is located between 8 and 33 miles above the Earth’s surface. It was enough water to fill 58,000 Olympic-sized swimming pools, according to detections from a NASA satellite.

The detection was made by the Microwave Limb Sounder instrument on NASA’s Aura satellite. The satellite measures water vapor, ozone and other atmospheric gases. After the eruption occurred, the scientists were surprised by the water vapor readings.

They estimate that the eruption delivered 146 teragrams of water to the stratosphere. One teragram is the equivalent of a trillion grams, and in this case, it was equal to 10% of the water already present in the stratosphere.

That’s nearly four times the amount of water vapor that reached the stratosphere after the 1991 Mount Pinatubo eruption in the Philippines.

A new study about the water vapor findings published in July in Geophysical Research Letters.

“We’ve never seen anything like it,” said study author Luis Millán, an atmospheric scientist at NASA’s Jet Propulsion Laboratory in Southern California, in a statement.

“We had to carefully inspect all the measurements in the plume to make sure they were trustworthy.”

The Tonga eruption was different because the water vapor it sent into the atmosphere can trap heat, which could cause warmer surface temperatures. The excess water vapor could stay in the stratosphere for several years, according to the researchers.

The additional water vapor in the stratosphere could also lead to chemical reactions that temporarily contribute to the depletion of Earth’s protective ozone.

The researchers believe the main reason for the amount of lofted water vapor was due to the depth of the volcano’s caldera 490 feet below the ocean’s surface.

If it was too deep, the depth of the ocean would have muted the eruption, and it was too shallow, the amount of seawater heated by the erupting magma wouldn’t have matched what reached the stratosphere, the researchers said.

Scientists are still working to understand the unusually energetic eruption and all of its superlatives, including hurricane-strength winds that reached space.